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Abstract—This paper proposes a framework for balancing
competing user (i.e., application) level requirements by resolving
the corresponding trade-offs in a distributed system with limited
resources. Assuming that each user’'s preferences can be
characterized by some utility function, the goal of balancing
competing requirements for each user as well as across different
users is to maximize the aggregate utility. The framework
assumes a presence of Intelligent Plane, which isolates usersfrom
details of the network properties and mechanisms of
implementation of the user level requirements. The Intelligent
Plane performs the following tasks: (a) maps the user level
requirements into the network resource requirements, (b) maps
the resource congestion prices into prices of the user level
requirements, and (c) maps the user willingness to pay for the
user level requirements into payments for the specific sets of
resources. Once payments for the specific sets of resources are
identified, the resources are allocated to the users by a “TCP-
friendly” algorithm. The paper discusses this framework for a
particular case of balancing user requirements for throughput
and survivability in an unreliable network, wher e survivability is
achieved through redundancy, e.g., using multipath routing.

Index Terms— Distributed system, resour ce allocation, elastic
user, pricing, intelligent plane.

. INTRODUCTION

ince network resources are shared by multiple users (i.e.,
plications) and performance of each user is typicaly
characterized by multiple competing criteria, network
management includes the following two major tasks: (@)
making the best use of the allocated resources for each user by
resolving the trade-offs among competing user criteria, and
(b) sharing resources among different users. Framing the goal
of network management as the aggregate utility maximization
subject to the capacity constraints, where the aggregate utility
isthe sum of the individual user utilities, has been proposed in
[1]. This framework is based on the concept of elastic users,
capable of adjusting their behavior in response to congestion
pricing signals. Papers [2]-[3] have developed a distributed
scheme for aggregate utility maximization in a case when user
utilities are expressed in terms of the link bandwidths. This
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scheme interprets Lagrange multipliers associated with
capacity constraints as congestion costs of the corresponding
resources. These costs are communicated to the elastic users,
who adjust their resource requirements or willingness to pay
for the resources by maximizing the individual net utilities.
Figure 1 illustrates this scheme.
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Fig. 1. Usersdirectly responding to resource pricing

However, assumption [2]-[3] that user utilities are
expressed in terms of the network resources may be too
restrictive. Typically, users more naturally can express their
preferences in terms of the user level requirements, such as
rates and Quality of Service (Q0S) parameters, rather than
network level parameters, such as required bandwidth.
Mapping user level requirements into network level resource
requirements as well as mapping congestion resource pricing
signals into pricing of the user level requirements depend on
the specific network properties as well as specific
implementation of the user level requirements. In the Internet
with a dumb core and intelligent applications concentrated at
the network edges this mapping can be performed by
intelligent applications through probing.

Several recent proposals, starting with [4], argued in favor
of relieving users from the burden of such probing by moving
some intelligence to a separate “Intelligent Plane” (IntPlane).
The IntPlane sits between the users and the network and hides
the details of the network properties and user level
requirements implementation mechanisms from the users.



The advantages of such enhanced architecture include user
convenience, possibility of optimization of the resource
allocation and security considerations [4]. This paper
proposes the functionality for the IntPlane as a mapping
mechanism, which is shown on Figure 2.
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Fig. 2. Intelligent Plane as a mapping mechanism

Each elastic user attempting to maximize its individual net
utility informs the IntPlane on its relative marginal utilities
and “willingness to pay” for the network resource. The
IntPlane performs the following tasks: (a) given the amount of
the network resources allocated to each user, the IntPlane
optimizes the balance among competing user level
requirements for each user, (b) maps user willingness to pay
into payments for specific sets of the network resources, and
(c) communicates to the user the aggregate congestion cost of
the resources allocated to the user. Once the willingness to
pay for the specific sets of resources is identified, the
resources are allocated to users by a TCP-type algorithm. The
“payments’ may either represent real funds, or be simply a
parameter in the TCP-type protocol [5]. To ensure capability
of this scheme to operate in a competitive (non-cooperative)
environment, the resource allocation should be proportionally
fair, meaning that resources are alocated to the users
proportionally to the payments [2]-[3]. Proportional fairness
ensures that both schemes, based on the direct user payments
for the resources and user payments for the QoS, result in the
same resource allocation and user payments[6].

This paper discusses possible implementation and benefits
of the proposed enhanced architecture in a case of providing
reliable services in an unreliable network. The reliability is
achieved through redundancy by reserving extra bandwidth to
protect against link capacity variability due to fading and
mobility, and using multipath routing to protect against link

failures. The packet level implementation of the redundancy
scheme can be based on the route diversity coding [7].
Benefits of multipath routing for load balancing and
protection against network element failures have been known
for a long time [8]. However, research on load balancing,
protection and restoration for wire-line and wireless networks
has been mostly concentrated on evaluation of various
performance and survivability metrics of certain multipath
routing schemes [6]. While providing quantification of
improving survivability with increase in redundancy through
consuming more network resources, this research leaves aside
the problem of balancing survivability and economic
efficiency for each user as well as across different users.
Conventional practical solutions, which offer users a limited
set of choices with respect to survivability, attempt to resolve
these trade-offs within a centralized framework by assigning
the corresponding service classes. A price based market
framework shifts choices regarding requested services,
including survivability levels, to the users, assuming that users
are aware of the available services and their prices [10]-[11].
The paper is organized as follows. Section Il describes a
model of the unreliable network and implementation of the
reliable throughput. Section 11l introduces user utility of
obtaining certain QoS and formulates the corresponding
aggregate utility maximization framework. Section IV briefly
extends decentralized aggregate utility ~maximization
framework [2]-[3] to a case when each user is aware of
mapping its QoS requirements into the requirements for the
network resources. The decentralization is based on
congestion pricing of the resources and elastic users
responding to these pricing signals by maximizing their
individual net utilities expressed in terms of the requested
network resources. Section V develops a decentralized
aggregate utility maximization framework assuming that users
are unaware of the network properties and implementation of
the user level requirements. The decentralization is based on
proportionally fair pricing of the user level requirements and
elastic users responding to these pricing signas by
maximizing their individual net utilities expressed in terms of
the user level parameters. The mapping between user and
network level parameters is done by the IntPlane. Section VI
considers some examples and discusses the implication.
Finally, conclusion briefly summarizes the proposed
framework and proposes directions for future research.

Il. MODEL

Subsection A defines two user SIS QoS parameters: the
reliable throughput (i, and the corresponding reliability

exponent ). Subsection B introduces a “fair” bandwidth

sharing with controlled portions of link bandwidths allocated
to different users. This bandwidth sharing alows for
implementation of the reliable throughput by creating a
“safety margin” for the fluctuating instantaneous user
throughput. Subsection C describes an approximation for the
reliability exponent used in the remainder of the paper.



A. User level parameters

Consider a network with link capacities C; being subject to

variability due to fading, mobility, node and link reliability,
etc. Each network user SU'S is uniquely identified by its
origin-destination and user level Quality of Service (QoS)
requirements. Presence of several users with the same origin-
destination models different types of applications with the
same origin-destination, e.g., voice and video. We assume
that link capacity fluctuations occur on such fast timescal e that
they cannot be completely absorbed by the network
management actions. Due to these fluctuations, link

capacities C, are in effect random variables and thus it may

be difficult or even impossible to guarantee a fixed bandwidth
(throughput) to a user. Instead it may be more natural to view

the instantaneous aggregate throughput X, for auser SL S
asarandom variable. Dueto possible large fluctuations in the
instantaneous aggregate throughput X, users may prefer to

characterize their requirements in terms of the pair (L, V)
of the “reliable’ aggregate throughput /L4
corresponding  reliability exponent

and the
quantifying the
confidence level that the instantaneous throughput X, does
not deteriorate below [/, where

v = —Iog[%] @

s = As

and the average aggregate bandwidth reserved for user S is
X,. Figure 3 illustrates that creating a “safety margin”
A, =X, — f, increases confidence that the instantaneous

throughput X, would not deteriorate below [ .

Fig. 3. Reliable aggregate throughput

Note that besides reserved average aggregate throughput is

and reliable throughput g/ , reliability exponent ). aso
depends on: (@) probability distribution of the random link
capacities C; , (b) mechanism for sharing of the instantaneous

link bandwidth among different users, (c) implementation of
the reliable throughput /., given resources allocated to user
S, and (d) bandwidths reserved on specific routes. This paper
assumes that random link capacities C, arejointly statistically

independent for al links | JL. Assumptions (b)-(d) are
described in the next two subsections.
This paper assumes that each user S instantaneous

aggregate throughput X, can be approximated by a normally
distributed random variable with average X, and standard
deviation O, and thus reliability exponent (1) is
X -
Vs =—Iog<1>[—s ”Sj (2)
g

S
where

&
D(&) = \/% j exp(—/72 / 2)d/7 @A)

Note that approximation (2)-(3) neglects small probability
event that the bandwidth is negative. In a case of high

reliability requirements. ), — oo, reliability exponent (2)
can be asymptotically approximated as follows:

Vs (X, — 1s)? (4)

20?

B. Bandwidth Sharing and Reliable Throughput
We assume that each user S is allocated a certain controlled
portion ¢ of the link | bandwidth C,, or equivalently, the

average bandwidth X, = C, ¢, where average capacity of a
def
link | is C =E[c], ad ¢ =) @ <1 The
EEN

instantaneous bandwidth allocated to auser S onalink | isa
random variable X, = C ¢ = (C, /G, )X,.. Inacaseof small
variability in the link capacities it is convenient to introduce
“small” random variables {, =1—¢, /ffI with zero averages
E[£,] =0, so that the instantaneous bandwidth alocated to
auser Sonalink | is
Xs = (1= &)X, 5)
In a particular case of a link failure model, when
operational link | has capacity C, =6| and failed link has
capacity C, =0 it is convenient to introduce binary random
varisbles 8, =0 if link | is operationa and J, =1
otherwise, so that the instantaneous link | bandwidth is
¢, =(1-9,)¢,and & =5, -9, , where 4, = E[J/]. In
this particular case the instantaneous bandwidth (5) is
X = (1= 8) X, where X = C ¢,



The rest of this subsection discusses implementation of the
reliable throughput [/, given the instantaneous link

bandwidths X, alocated to user S.  Given vector

X =(Xg,/OL), the maximum achievable user S

instantaneous aggregate throughput is X, = z Xy » Where
IOM % (X,)
M (X,) isthe corresponding min-cut. This paper assumes

a suboptimal implementation of the reliable throughput, based
on the route diversity coding [4] and shown on Figure 4.
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Fig. 4. Route diversity coding

In this implementation, after adding redundant bits and
coding, user SLS data stream of rate 4/ is transformed

into stream of higher rate X, = /. This resulting stream is

split into flows X, over feasible routes r R, with the
same origin-destination:
X = ) Xy (6)
rORg
User S instantaneous throughput, i.e., rate of the user stream
received at the destination, is

Xo = ) Xg @
rOR,
where the instantaneous throughput over route I L R is
Xs’ = (1_ ér )XS’ (8)

and the normalized variability of a route I capacity is
characterized by random variable

& =1-T1a-&). ©

Or

The reliability exponent (1) quantifies the possibility of
reconstructing user S data stream at the destination [4]. Note
that formula (9) is based on the assumption that link capacities
fluctuate at much faster time scale than time needed for a
packet to reach its destination. In the opposite extreme case
the normalized variability of a route I capacity is
characterized by random variable

¢ =1-max(l-¢), | 0r. Our anadysis can be easily
carried out for this case a so.

Calculation of the reliability exponent (1) is comparatively
simple in a case when routes I L] R, do not have overlapping

links. In this case the aggregate instantaneous throughput (7)
is a sum of jointly statistically independent random variables

since Er arejointly statistically independent random variables

for r OR,. Whenroutes I L1 R, do have overlapping links,

caculation of the reliability exponent (1) is generaly a
difficult problem [9].

C. Approximation for the Reliability Exponent

We approximate the reliability exponent (1) by the leading
term in the asymptotic expansion (4):

= 2
Ve = X, = ), (10)
S 20_52 ( S S)
where user S average aggregate throughput is
X, = > X (11)
rORg
the variance of the aggregate throughput is
2 2303
ogl= D65 XX, (12)
11, F0Rg

the “normalized correlation” between route r;,r, R,
capacitiesis characterized by

2 _ 2
6;, = 2.6 (13)

IDrlﬂr2
and the normalized variance of the link | capacity is
2 2 . _ 2 .
6 = E[El] . Note that matrix O _(‘9f1fz)r1,rzuRs is
symmetric and positive: 6% =6? and

nr, ror
Also note that

expression (10) can be obtained from a Gaussian link model in
a large deviation regime of high rdiability [12]. For a
particular model of link failures the normalized variance of the

link | capacity is 87 = 5,(1—5,), where the probability of
link | failureis &, 0[0]].
Reliability exponent (10) can be expressed as follows:

1 1 2 -1
Vs :_(1__] [ Hrzr ag,ay ]
2 w, o PR R P

in terms of the user S redundancy factor, i.e., the number of
bits transmitted per a bit of the “payload” [7],

0<@’ < min(ﬁf,@é), ar,r,.

I —

(14

def 1 ~
= X (15)
M roR,
and portions of load routed on feasible paths I L1 R are
def
Ay = (W)X (16)
where
w, 21 17)
da, =1 (18)
roRg

Given load allocation vector a¢ = (a4 ,r OR,), the upper

limit on reliability exponent (14), achieved as o, — @, is



-1
(19)
11,1 0Rg

Given upper limit (19), the minimum redundancy (15)
required to achieve reliability exponent ) for user S is

w=0-\¥i7.)’

If routes I LJ R, do not have overlapping links, formula
(12) takes the following form

ys __( Zerfrza 0’

(20)

al=3%(6%) (21)
rORg
and thus, formula (14) simplifies as follows:
-1
Ve =1(1-—j > 6al (22)
2 s roRg

where we simplified notations as follows: 8° = 67 .
Given redundancy factor ¢, one may attempt to maximize

the reliability exponent (14):
Yo =maxy,

ag 20

(23)
subject to constraints (18).
Theorem 1. Given redundancy factor ¢, and network

properties represented by matrix © ¢, solution to optimization
problem (22)-(23), (18) is

1 1Y wn )
/ -z(l-zj Ze) e
and is achieved forload allocation
. =ty / Dot (25)
1, r0Rg
where symmetric and positive matrix Ty = (tgr2 )rlerDRs is the

inverseto ©_: T, =©".
Proof. The optimal load alocation is determined by
solution to the following opti mization problem:

min > 67, (26)
s 1.1 0Rg
subject to constraints (18). The Lagrangian for (25), (18) is

- e zay]

a.as + /1(1—
2
1, 0Rg roRs

and, due to convexity, the corresponding necessary and
sufficient Kuhn-Tucker conditions form the following linear
system [13]:

oja, =Y 6ra, —A1=0 27)
r'oORg
where Lagrange multiplier A is determined by (18). This

ends the proof.
The following statements directly follow from Theorem 1.
Corollary 1. Given the network properties represented by

matrix O, the upper limit on the reliability exponent (10),

achieved as redundancy factor &b, — @, is
-1
~AK — 1 2
Vs =5 Ztrlr2 (28)
2 I, PR
Corollary 2. If routes I [ R, do not have overlapping links,
the maximal reliability exponents (24) is

]

s roRg

the optimal load allocation (25) is
a. =67 / > 67 (30)

r'oRg

and the upper limit (28) is
== Z 6? (31)
rORg

[1l. NETWORK MANAGEMENT OBJECTIVE
Subsection A introduces individual user utility of obtaining
service parameters (L4, ). Subsection B formulates the

aggregate utility maximization framework [1] for a particular
case of balancing competing requirements for reliable
throughput and the corresponding reliability for each user as
well as across different users.

A. User Utilities
Let hy(X, 1) be a function, monotonously increasing in
both arguments O< {/ < X<oo. Consider elastic user S

whose satisfaction of obtaining service with parameters
(U, y) ischaracterized by autility function

U (e, y) =u (u)vs(y), (32)

where function U (4) is a conditional average over the

aggregate rate Xi:

u, (1) = E, (%, )%, > 4],
and function V,())

0< y <. Note that under large deviation regime of high
reliability, conditional average in (32) can be approximated by
the corresponding unconditional average. Figures 5 and 6
sketch typical utility functions u (&) and V(y)
respectively.

Definition (32)-(33) is quite flexible, covering a wide range
of possibilities. Consider some particular cases. User S

(33)

is monotonously increasing for

having “hard” requirements on the reliability parameter
Y. =y is characterized by utility function (32)-(33),
where



v.() = xr =y, (34)
and step-wise function is x(y)=1 if y>0, and
X(y)=0if y<0.

uS
0 H

Fig. 5. Typical user utility of the reliable throughput

0 y

Fig. 6. Typical user utility of the reliability exponent

User S, elastic with respect to the reliable throughput L, is
characterized by utility (32)-(33), where function
hy(X, i) =u, (1) does not depend on the actual random

aggregate throughput X [J[4,00) and depends only on the
reliable aggregate throughput £ [1[0,0). A particular case
(32)-(34) with ™ =0 describes an elastic user concerned
with the average throughput: U, = u_(E[x.]). A particular
(32-(34) with y™ =0 and
hy(X, &) =u,(X) independent of the reliable throughput

1 [][0,00) describes an elastic user whose satisfaction is
characterized by the average utility of the instantaneous
aggregate throughput: U = E[u,(X)] .

case of function

B. Aggregate Utility Maximization Problem

S. Shenker has proposed [1] aggregate utility maximization
to be the objective of network management. In our particular
case the aggregate utility maximization framework takes the
following form:

max > U (4..v.) (35)

over user level requirements (4, ) = (U, Vs, SUS) and

vector X =(X, :sOS,rOR,) subject to constraints
(20), link capacity constraints

Y <G, (36)
flow non-negativity constraints: isr >0 and constraints on
the reliable throughput 0< 1, < X, SO'S, where the link

| loadis
V=2 D%
s rlOrORg
Optimization problem (35) is equivalent to the following
optimization problem

maxW
MY, X

subject to the same constraints except (37), where the “social
welfare” is

w :ZS:Us(:us’ys)_ZI: f| (yl)

and appropriately selected pendty functions f,(y) may

quantify the congestion penalty in terms of delays or packet
loss as link utilization approaches link capacities [3]. For
packet networksit is often assumed [14]

iy =y/(©-y). (40)

A particular case of optimization problem (38)-(39), when

each user S specifies its service requirements (L, V)
correspond to the following traffic engineering problem:

mny (3 $%

s rilOrORg

(37)

(38)

(39)

(41)

subject to constraints

Y2
DX zp+| 2y Y OEX X, |, OsOS (4
roRg 11,1, 0Rg ! '

IV. USERS RESPONDING TO BANDWIDTH PRICING
This section assumes that each SIS (a) is aware of the
network properties quantified by matrix ©, and (b) capable
of finding the optimal balance (4 ,).) between competing
requirements for the reliable throughput L/, and the corresponding
reliability exponent )/ by maximizing the individual utility, given
allocated bandwidths X = (X, ,r OR,):

y. =ag rr;gX{us % -o\2r V() @

U, =X, — 02y, (44)
Once optimization (43)-(44) is performed and thus individual
utilities with respect to the bandwidth

U, (X,) = Us(X, — T2/ V()

(45)



are identified, the aggregate utility maximization problem

(38)-(39)becomes
(D03 0[L TR ) e
Note that under hard constraints on the reliability (34) the

s rilOrORg
optimal operating point (43)-(44) is

(s, ys) = (isz —o2r", y“‘) (47)
and thusindividual utility (45) is
U (Xo) = Ue(X = oo 270 Ve (r™) (48)

This section describes distri buted algorithms to aggregate
utility maximization (46), assuming that user SO S utility

function U is known only to this user. The algorithms are

the straightforward extension of algorithms proposed in [2]-

[3] for acase U, :US(ZXS

rORg
users respond to congestion price of the bandwidth.
Subsection A describes algorithm based on users adjusting
bandwidth requirements in response to bandwidth prices.
Subsection B describes algorithms based on users adjusting
their willingness to pay for bandwidth in response to rates
charged for the bandwidth.

J, and assume that elastic

A. Uses Adjusting Bandwidth Requirements

Consider the following individual optimization problem for
auser S attempting to maximizeitsindividual net utility:

maxmax{u (X, — o2V, () - D d, X } (49)

Xg20 y=20 1OR,
wheretheroute I' priceis:
=> (%) (50)
10r
the link | price f/'(y,) is a derivative of the congestion
penalty function for thislink f,(Y,), and thelink load Y, is
given by (37). Solving individual optimization problem (49)-

(50) by each user S S also maximizes the aggregate utility
(46) if the link prices are “right”, meaning that derivatives

f'(y,) ae cdculated a the optima link | load
y, =y™, Ol

Kuhn-Tucker necessary conditions for a vector

X, =(Xg,r OR,) tosolve (49) are as follows [13]:
} d . :
J2yot Yy 6%, =1-—Lif d, <u; (51)
r'ORg us
Xg =0if d, >u' (52)

where U (1) = dug(u)/du isthe derivative of the user s
utility at the point of this user reliable throughput 4 = L

and Oy is given by (12). If user utilities JS()ZS) are

concave, (51)-(52) are aso the corresponding sufficient
conditions [13]. In this case, user S optimal response to the

pricing signals d_ is requesting bandwidth vector

X, =(Xg,r OR,), which solves system (51)-(52) and thus

maximizes itsindividual net utility (49)-(50).
Generally, optimain (46) and (49) are achieved when some
flows are zero: X, =0 for some r OR,, sOS. Infact,

this situation is typical in presence of “high cost”, e.g., highly
congested or very “long” routes, when optimal solution is not
to use these “expensive’ routes. For example, conventional
shortest path routing uses only one, “optimal” route. Given

M = 0, define a subset of feasible routes participating in user
s S transmission:

Ro(u) ={r:ug(p) >d, . r DR} (53)
Consider two routes I,,r, R, (4), which do not have

overlapping link with each other or with any other route
Or OR (W) : riﬂr =0, 1=12. In this case we have

from (51):
X, (6, 1-d, v,
X,, |6, ) 1-d, /u.

N
It follows from (54) that if two routes f,,r, [J R (&) have

(54)

the same cost: d, =d, , then the user transmission rate on

these routes should be inversely proportiona to the variances
of the fluctuating bandwidths of the corresponding routes:

%, /X, =16, /6, )2 (55)

This conclusion that load allocation among severa routes of

the same cost should send more traffic on the better quality

routes while preserving routing diversity is intuitively
plausible.

In acase of hard reliability constraints (34) when feasible

routes I L1 R, do not have overlapping links, the optimal

flow vector X, = (X, ,r OR,) can be identified explicitly.

Indeed, in this case Kuhn-Tucker equations (51) take the
following form:

Xy = I max| 0, 1— i (56)
\/z—yerz uS
Summarizing (56) over I L R, we obtain:
z = max(o 1- d—J (57)
\/— rI]RS us

Substituting (57) into (44) we obtain the following expression

for og:
1
-2y (58)
\/ /LDRS(#) ng }

r



Substituting
for theflows X, ,r O R, (1):

_— H

d )1

X d (1_7]?

> alri )t e
r'DRS(,U)er’ s

Substituting (59) into right-hand side of the following
necessary condition for optimality in (49)

into (56) we obtain the following expression

(59)

(60)

we obtain a quadratic algebraic equation for the derivative
U, yielding the reliable throughput 4 = 4 . After that,
flows are determined by (59).

B. Uses Adjusting Willingness to Pay for Bandwidth

Solving individual optimization problem (49) by each user
results in a decentralized maximization of the aggregate utility
assuming convexity and “right” link prices. Formula (50) can
be used as a basis for finding the right prices by a distributed
algorithm [2], when users declare their requirements for

bandwidth X = (X, ) , then “the network” informs users on

the route costs (50), then users adjust their bandwidth
requirements, etc. This subsection describes a distributed
algorithm for finding the “right” prices, based on the user
willingness-to-pay. This algorithm, being a straightforward
extension of the corresponding algorithm [3], probably better
fitsinto existing Internet architecture.

Consider a situation when, given bandwidth vector

X, =(Xy,r OR,), each user S determines its willingness
to pay W, for bandwidth on each route r LR, by
maximizing itsindividual net utility:

v >0{ (é( /pg)]—

where pPg is the rate charged by the network for a unit of

> ow, } (61)

riRg

bandwidth on route r LJR,. After user S informs the

network on the vector (W, ,r L R,), the network, running

Transmission Control Protocol — Active Queue Management
(TCP-AQM) protocol [5], adjusts bandwidth vector

= (X, ,r OR,) according to the following system of
d|fferent|al equatlons

X, =k(w, -%,d,) (62)

Assuming that each user S monitors its rates X, on routes

riR, and instantaneously adjusts parameters W, by

solving optimization problem (61) the user willingness-to-pay
is

_ U (X
w, =5, 2Us(X)
0Xq
Consider rate of change of the social welfare (39) with time:

W = ZZGW~

s rDRs
Substituting (62)- (63) into right- hand side of (64) we obtain

I J(—J
PDIE

s rORg
2
Xg 20
s rORg

Thus social Welfare (39) is a Lyapunov function for the
dynamic system (62)-(63). Note that since social welfare (39)
may have multiple local maxima for streaming applications
[1], inequality (65) only implies that the bandwidth adjustment
process (62)-(63) converges to the local maximum of the
social welfare (39).

(63)

(64)

(65)

V. INTELLIGENT PLANE: QOS PRICING AND IMPLEMENTATION

This section proposes algorithms for aggregate utility
maximization (35) assuming that users are unaware of the
network layer parameters. These algorithms assume presence
of the IntPlane, which isolates users from the network
properties and QoS implementation mechanisms. Subsection
A considers implementation and pricing of the service

parameters (L4, ys) by the IntPlane, given price of the

bandwidth (d, ,r O R,) . This setting may describe a case of

“fat” links carrying traffic from a large number of users, so
that the link costs can be considered fairly stable. Subsection
B describes a cross-layer, distributed algorithm for aggregate
utility maximization,. The algorithm is based on user

willingness to pay for service parameters (4,).) and

results in proportionally fair pricing. Subsection B also
demonstrates that under certain, rather restrictive, conditions
this algorithm maximizes the aggregate utility.

A. Users Adjusting QoS Requirements
Consider auser SIS individual optimization problem
I;Inyagé{u s (,U, y) - IUDs (y)} (66)

where the price of a unit of reliable throughput for user S is

_ 4
s = — (67)
Vs
the price of a unit of the average throughput for user S is
=>d.a, (68)

rOR,



the upper limit on the reliability exponent PS isgiven by (19),
cost of a route I is d, and vector a, = (as,r OR))

characterizes implementation of user S requirements.
Given implementation of all user level requirements

a =(a,,s0S), maximization individual net utility (66) by
each user S[J S also maximizes the aggregate utility:

ZU (U, V) Z T 7 mszf

over user level requirements (/,ls,ys :s[S) if the route
cogts are

(69)

f
T B

The problem of joint maximization of the aggregate utility
(69) over user level parameters (U, ), :SUS) and
implementation (@4 ,r OR,,SOS) can be decomposed
into (@) maximization of individual net utility (66) by each
user SUS, and (b) minimization of the cost of
implementation of user S D S requirements by the IntPlane:

(70)

D. = min > d.a,
a, 20 1- 2y ZHZ a, a, R,
11,1 0Rg
subject to constraints (18).
Cost minimization (71) subject to constraint (18) can be
carried out asfollows. Consider optimization problem:

(71)

g = min Y6 a.a, (72)
ik "1 r20Rg
subject to constraints
> d,a, <d (73)
rOR,

and constraints (18). Note that this optimization problem
intends to maximize the bound on the reliability exponent (19)
subject to upper constraint on the average route cost, or,

equivalently, to minimize the average route cost subject to
lower bound on the reliability exponent (19). The Largangian
for this optimization problem is[13]:
L= Y6 a
11, F20Rg
_ (74)
Al d=Yda, |+A,]1-D a,
rORg rORg

where the corresponding Largange multipliersare A; and A,.
Optimization problem (72)-(73), (18) is convex and thus, the
necessary and sufficient conditions for a vector
a,=(ag,rJR,) to be a solution to this optimization
problem are as follows [13]:

362 - Ad,

r'oRg
a, =0if A,-Ad, <0
where Largange multipliers are A, and A, are determined
from (18) and (73).
It can be shown that A;, A, = 0, and thus the structure of
the solution to (72)-(73), (18) is as follows. Without loss of
generality, assume that all K =dimR; routes r O R; are

it A,-Ad. >0
(75)

arranged in M mutually exclusive groups G,,,m=1,..,M

so that all routes in the same group have the same cost dm
and cost increases as the group number increases:

G G, Gy
/—/%
d, =.=d <dy, =.=d <..<d, =.=dy
=d, =d, =dy,

Routes within each group are numbered arbitrarily. To avoid

trividlities we further in the paper assume that
6. >0, Or OR;. Sincesolution to system (75) is
Km
a, =) th, max(0,4, - Ad)), (76)
i=1

where matrix T, is inverse to the matrix

n =)

feasible routes from groups G, i

= (triij ).K o

, a the optimum the load is spread over
=1..m and m is

determined by conditions: d, <A, /A, dyy > A, /4,
Substituting (76) into conditions (73) and (18) results in
explicit, though elaborate, expressions for Lagrange
multipliers A, and A,. Thus, the complexity of solving
optimization problem (72)-(73), (18) lies in inverting matrices
O,m=1,.,M.

Once solution :a'(a), g = §(d) to optimization
problem (72)-(73), (18) is found, solution to optimization
problem (71), (18) is @™ =a(d®™), where d® and

D, solve the following optimization problem:

~

=, d
D, =min ﬁ (77)
" 1-y29(d)
subject to constraint
d <d< d (78)

It can be shown that (76)- (77) is a convex optimization
problem, which can be solved by fixed points as follows:
~ 2y8
g =228
Ay
where /11 is the Lagrange multiplier in (74). It is aso
possible to show existence of M constants
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def def

0=1 <M1, SN, S Sy SNy =1 (79
suchthat if y/p. O[n. ..n,) then a; >0, i=1..,K_

and a; =0, i =K_ +1..,K. Once optimal load split is

identified, the redundancy factor is given by (20) and the
optimal reliable throughput is determined by solution to the
corresponding individual optimization problem.

In a case of a user S concerned only with the average

throughput: y, — O, solution to (71)-(18) sends entire traffic

on minimum cost routes I LJG;. |If there are severa

minimum cost routes: dimG, = 2, a situation of minimum
equal cost multipath arises. The optimal load split among
minimum cost routes I L1 G, is

K, _1K1
a, =| >t ty if k=1.,K
k[éﬁj;m ' (80)

a, =0 otherwise
and the redundancy factor is & =1. In another extreme case
of very reliability sensitiveuser S: y — /. — 0, the optimal
load split among feasible routes I LJ R is given by (25), and

redundancy factor is given by (20).

B. Users Adjusting Willingness to Pay for QoS
We assume that user S is charged for service (4,)) a
price proportional to the reliable throughput £/
P = p.u (81)
where rate P, is some increasing functions of the reliability
exponent . Given service (44, )) and price structure (81),

user S (a) determines and communicates to the IntPlane its
willingness to pay for the service W = W, where

w, =argmax{u ,(w/p,.y)-w

and (b) estimates and communicates to the IntPlane the
relative importance of its competing requirements for the
reliable throughput £/ and reliability exponent ) quantified

by itsrelative marginal utility

(82)

oU

ou
Based on this information and being aware of the network
properties quantified by matrix © , the IntPlane performs the

following tasks: (a) maximizes user S utility U (4, )),

gwm— (83)

given bandwidth vector X s asfollows:

:us = k{1+ gs(:us'ys)[ayS/a'uS])zs}

where K > 0 is some constant, and (b) allocates portions

(84)

X5 Ops
,u X
of user S payment (82) to “pay” for the route r LR,
bandwidths, where the reliable throughput is

(85)

s

U, =% -0 2y (86)
Combining (85) with (86) we obtain
T, = (1 -J2yx, 6%c )i—Sr (87)
Itiseas/toverify that &
il z X 0/,/ s =1 (88)

Hs (OR,
and thus the proposed payment scheme is proportionally fair
[2]-[3]. Once payments W, = W71, areidentified, the flow

vector X =(X,) is adjusted by a “TCP-type’

allocation algorithm (62).
Consider a particular situation, when (a) relaxation of the
user level parameters (84) is much faster than relaxation of the

allocated bandwidths (62), i.e., K >> K and thus:
AR AR
alus A ays >ZS ays U

(b) each user S instantaneously adjusts and informs the
IntPlane on its willingness to pay W, (82):
ou,
ou
() the IntPlane instantaneously allocates each user S
payment (90) into payments W, = W,71 . for the bandwidths

load

(89)

W, = 4, (%0)

on specific routes r LI R .
Consider rate of change of the social welfare (39) with

time:
aw aw
= z — V. (92)
6}/3
Dueto our assumptlons
W=%Y U, s _ 4 d | % g & (@
s TR\ Oy OXg Xg
where
L =X, oV, % (93)
ou, OXg

Substituting (86) and (93) into (92) we obtain that the
proposed adaptation algorithm increases the social welfare:

2
W = ZZ(GU s _ g rj X, =20 (94

5 R\ OU 0Xg
and in a convex case maximizes the social welfare.
Note that proportional fairness of this scheme is a result of
property (88) of approximation (10). For more general trade-




11

offs than (10) property (88) may not hold, and thus ensuring
of the proportional fairness may require more complicated
pricing structure than (81).

VI. EXAMPLESAND IMPLICATIONS

Subsection A looks at benefits of multi-path routing.
Subsection B considers a case of feasible routes without
overlapping links.

A. Benefits of Multi-path Routing

In a case of asingle-path routing, when user traffic must be
routed on a single path, the optimal route and the
corresponding price of a unit of the reliable throughput under
approximation (10) are determined by solution to the
following optimization problem

Dr;(y) = rer]!{] Dr (y)

where the price of a unit of the reliable throughput on a route
ris

(95)

D, (y) = (96)

d,
1-6.\2y
Figure 7 sketches the price of a unit of the reliable throughput
on a fixed route (96), the price of optima single-route
implementation (95) (fat curve), and the price of optimal
implementation using multipath routing (71) as functions of
thereliability parameter ) .

AD
D D, y

-1 -1 -1 ~
grl Hrz 0r3 2ys
Fig. 7. Price of aunit of the reliable throughput

g

Figure 7 assumes a typical situation, when higher quality
routes are more congested due to higher demand:

d, <d, <d,_, while 6 >0, >0, . Inacaeofa
single-path routing, when user reliability requirements for y

r3?

are low, the least congested, low quality route I, should be
used. Asuser reliability requirements increase, the user traffic
should be carried on more congested, higher quality route I, .
As user reliability requirements keep increasing, the user
traffic should be shifted to the most congested route I, having

the highest quality.  Sufficiently high user reliability
requirements cannot be met with a single-path routing.

Since, according to (95)-(96), maximal reliability exponent
user S can achieve with asingle path routing is

V. =(1/2) max 8>
v. =W2)maxd;”,
it follows from (31) that this user can increase its reiability

exponent with multi-path routing without overlapping links up
to

(97)

— -2 H 2
I, (EZR‘:Q ]rgwﬁr >1 (98)
times. Gain (98) increases with increase in the routing
diversity. Beneficia effect of multi-path routing on load
balancing manifests itself in reduction of the average price of
the unit of reliable throughput. Generally, this beneficia
effect increases with increase in the user reliability
requirements. Note that multi-path routing does not have
beneficial effect for a user not concerned with reliability
(y =0), since in this case optimal implementation is based
on the minimum congestion cost routing.

To get feeling of equal cost multi-path routing consider a
network shown on Figure 8.

Fig. 8. Network topology

The network has three feasible routes I, =(1,2,3),
r, =(14,23), and r, = (1,53) with the same congestion
costs: d;, =d, =d, =d, and matrix

6> x8*> 0
o=| x> 6 o0 (99)
0 0o &

where parameter  y J[0,]
between routes I, and I, . In this case the optimal load split
(80) isasfollows:

characterizes overlapping

1 1+y
a,=a,=——,0a; =
3+ ) 3+ )

If x=0, ie, equal cost routes I, I, and r; do not
overlap, the optimal allocation splits load equally among these
three routes. a, =a, =a, =1/3. If xy =1, i.e, matrix
(99) describes a network with just two equal cost routes
rsr, =r, and ry, the optimal loads allocation splits load

equally among these two routes: @, =@, =1/2.
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B. A Case of Routes without Overlapping Links
To illustrate our results, consider a case of K feasible routes
without overlapping links: © = diag(é?z,ez2 9,3 ) where
without loss of generality we assumethat 8, 26, 26, ,i.e,
route I, has lower quality than route I; if 1<i<j<K.

Figure 9 sketches the phase diagram, given the route costs
d,, k=212 and reliability exponent y inacaseof K =2
feasible routes.

A d/d,
a, =0
a,>0
a,>0
V2
>
91_1 6’2_1 2y.

Fig. 9. Optimal route mixture, given route costs

This diagram shows three qualitatively different region with
respect to the optimal route mixture (a,,d,), where @, is

the portion of the user traffic to be routed on path 1, , given
route relative congestion costs d,/d, and user reliability
requirements ). In theregion a, =1, a, =0 entire user

traffic should be sent over route ;. In the region

a, =0, a, =1 entire user traffic should be sent over route

r,. Intheregion 0 < a,,a, <1 user traffic should be split

between routes I, and [r,. Note that after some

enhancements this model can be used to describe a situation of
a soft handoff. Also note that the part of Figure 9, where

d,/d, <1 represents a typical situation when lower quality
route is less congested.

It isinstructive to analyze the optimal route mixture as user
reliability requirements ) or relative route congestion cost
d,/d, changes. Not reliability conscious user should use
the minimum cost route. As user reliability requirements y

increase, multi-path routing becomes preferable until upper
bound (28) is reached. Consider change in optimal

connectivity as low quality route I; becomes more congested,
i.e, as d,/d, increases from zero to infinity. In this case
optimal connectivity for not reliability sensitive user should
change from single route I; to multi-path routing r1U r,,

and eventually to single high quality, less congested route T, .
Connectivity for moderately reliability sensitive user should

change from multi-path routing r1U r, to single route T,

since low quality route I, alone cannot provide required
transmission reliability. Highly reliability sensitive user
should be aways connected over both routes: I, and T,,

since neither route alone can guarantee required transmission

reliability. Generalization to case of an arbitrary number of

feasible routes without overlapping linksis straightforward.
Figures 10 sketches the phase diagram with respect to the

optimal route mixture, given the average route capacities Ek ,
k =1,..,K and service parameters (U, ) .

6‘1+..+<~:KA H
C o+ +Cyy
Ac
6 +5,
|~
A 2y

>

Fig. 10. Optimal route mixture, given route capacities.

Figure 10 assumes a typical sSituation when lower quality
routes have higher capacity: C, >..>C, . In the region
A =(uy:a,.0,>0a, =.=a, =0
l,.,r are utlized while routes r,,,,..,l are not. As

routes

service requirements (44, ) become more demanding, lower
capacity, and thus more expensive, routes are utilized. Upper-
right border of the region A, aso represents service
requirements (4, y) having the same congestion cost. In a
case of penaty function (40), the link |
d, =G /(S —V,)?, where the average link load is Y, , and

cost is

thus, the upper-right border of the region A, represents
service requirements (4, y) resulting in the same average
delay on route r,,,: T =1/¢,,, if k=1.,K-1, and
T=cwif k=K.

VIlI. CONCLUSION

This paper has proposed a framework for aggregate utility
maximization in a distributed environment, where utilities are
expressed in terms of application-level requirements. The
framework assumes presence of the Intelligent Plane, which
isolates users from the network layer. Numerous issues
deserve further investigation, including the following: (a)
Stability in presence of delays in feedback loops. (b)
Implications of possibility that in non-steady regime some
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71, in (87) may be negative: 71, <0, meaning that certain

routes receive negative “payments’ for offering ther
bandwidth. This situation may cause difficulties, especially if
different routes represent different autonomous systems and
payments are associated with real funds. Even if payments do
not represent real funds and willingness to pay is simply a
protocol parameter controlled by the user, an interesting
guestion is whether a user can benefit by keeping the system
from reaching an equilibrium. (c) Property (88) ensures that
pricing structure (81) results in proportionally fair resource
allocation. Property (88) isaresult of approximation (10) and
may not hold in other situations, e.g., for alink failure model,
when more sophisticated pricing schemes may be required to
ensure proportional fairness [15]-[16]. (d) Possible
generalization to a case when users are not only “buyers’ but
also “sellers’ of the limited resources, such asin a case of a
wireless multi-hop network, when intermediate nodes may
expend their battery energy for relaying other users' traffic

[17]-[18].
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